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Abstract 

In this work, two surfactants derived from cetyltrimethylammonium bromide (CTAB) were synthesized 

by telomerization reaction: N-hexadecyl, N-methyl, N-(1,1 dimethyl) ethoxy amin and zinc di- cetyltri-

methylammonium. The first one is a surfactant with a linear hydrocarbon chain C16H33, the second one 

is a nanocomposite with two linear C16H33 chains. The latter was prepared in distilled water as solvent 

and zinc dioxide at 50°C.  The characterization of these two telomeres was obtained by nuclear magnetic 

resonance (1H NMR) and differential scanning calorimetry (DSC). 

Key words: Surfactant; nanocomposite; antifouling; cetyltrimethylammonium bromide; differential 

Scanning Calorimeter.   

 

1. Introduction 

Ship hulls must be covered with an effective an-

tifouling system to avoid the harmful conse-

quences of biofouling, as this causes a serious 

problem for the shipping industry, such as ves-

sel maintenance (corrosion) and fuel consump-

tion (increased energy demand) [1-5]. 

The antifouling coatings that appeared in the 

19th century [6] and managed to monopolize 

the coatings market are based on copper, arse-

nic, mercury oxide and organotin copolymers. 

However, they were largely banned in 2003 fol-

lowing the discovery of harmful effects on ma-

rine organisms [2,7-12]. 

These paints have been completely removed.   

As a result, great efforts have been made to de-

velop antifouling paints without tin and toxic 

compounds [10,11]. 

Some researchers have focused on coatings 

based primarily on the control of physicochem-

ical and mechanical properties such as surface 

roughness and wettability, which impact the in-

teractions between marine organisms and the 

treated surface [12,13]. Others have focused on 

coatings based on new natural biocides, such as 

compounds from  green algae [14-20].       

Transition metal nanoparticle systems have   

 very interesting physical properties and are   

 used in various fields such as biological label   

 ling [21, 23], medicine, sensors [24], light-

emitting diodes (LEDs) [25], and environmen-

tal technology [26, 27]. ZnO2 nanoparticles 

have promising applications in antifouling due 

to their high photoreactivity [28-32], low cost, 

chemical stability [33 -35] and non-toxic na-

ture. 

Supramolecular chemistry and nanostruc-

tured systems are the art of the century. The 

results indicate that ZnO2 nanoparticles up to 

1.0 wt % could make nanofillers with organic 

entities. This decreases water penetration be-

tween macromolecules [36-38] by forming a 

stronger, impermeable and more resistant gel. 

In the present work, we synthesized two sur-

factants, the first one enhanced by an acetone 

in the presence of ZnO2 nanoparticles, the sec-

ond surfactant with two chains linked by Zn. 
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 The functional difference of these two prod-

ucts taken as a coating will be treated in an-

other work. Our products are currently applied 

on  plates fixed on a panel at a depth of 4 me-

ters in the sea under well determined condi-

tions (paragraphs 3.2 and 3.3). 

2. Experience 

2.1 Materials and measures 

The N-hexadecyl, N-methyl, N-(1,1 dimethyl) 

ethoxy amin (product 1) and the di-acetyl-tri-

methyl-ammonium of Zinc (product 2), were 

synthesized in the laboratory of Sciences and 

Technology of Materials of the University of 

Djelfa -Algeria-, this synthesis is described in 

detail in the sections 2.2 and 2.3 

Analytical products were used directly without 

further purification such as acetone, zinc diox-

ide (ZnO2) and distilled water (H2O). The sol-

vents used for purifications were: acetonitrile, 

pentane, diethyl ether (Merck). Proton NMR 

measurements were performed on a Brucker 

WB 360 spectrometer (internal ref. CDCl3). 

Chemical shifts are expressed in 10-6. 

Differential Scanning Calorimetry (DSC) al-

lows to determine, as a function of temperature, 

the changes of state caused by physical (glass 

transition, melting, crystallization) or chemical 

(polymerization, oxidation, degradation) modi-

fications of a material. Measurements were per-

formed on a Mettler TA 4000 model apparatus 

at a heating rate of 10˚C/min. The apparatus in-

cludes a mechanical gas compression cooling 

system to control the cooling of the furnace at-

mosphere. In this study, the most important in-

terest is the glass transition temperature Tg and 

the melting temperature Tf. 

The glass transition temperature (Tg) was taken 

at the beginning of the jump corresponding to 

the heat capacity. 

Several works have been performed by DSC to 

determine the phase diagrams of polymer 

blends and systems [39, 40], thermal properties 

(DSC) were performed in a temperature range 

of 0 °C to 1000 °C. 

 

 

2.2. Preparation of N-hexadecyl, N-methyl, 

N-(1,1 dimethyl) ethoxy amin 

Under a fume hood and to eliminate all toxic 

traces, 50 ml of acetone and 4 g of cetyltri-

methylammonium bromide N(C19H42)Br and 

a few milligrams of ZnO2 are introduced into 

a 100 ml two-necked flask equipped with a 

refrigerator and a thermometer. The temper-

ature is set at 50°C with agitation for three 

hours. 

At the end of the reaction and after purifica-

tion in acetonitrile, the solution is poured into 

a funnel fitted with filter paper. The liquid 

flows out by gravity while the paper retains 

the solid. The product obtained is dried under 

vacuum and put back in the oven at room 

temperature during one night. The methyl 

bromide gas is removed by the fume hood. 

The yield of the reaction is 75%. 

δ (ppm):1H RMN (400 MHz, 25 °C, D2O): δ = 

3,34 (m, 29H, -(CH2)n-N; 2,39 (t, 2H, 

CH2CH2NCO) ; 2,27 (s, 1H, (CH3)3CON) ; 

1,78 (s, 1H, (CH3)N). 

These surfactants are characterized by a hydro-

philic aliphatic amine part. From an industrial 

point of view, they are manufactured from a 

fatty acid on which transformations are carried 

out to obtain an ammonium via an amide and a 

nitrile [41]. 

Many chemical reactions are required to obtain 

this family of surfactants; their manufacturing 

cost is significantly higher [42]. 
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2.3 Preparation of Zinc di-cetyltrime-

thylammonium 

In the same way as the previous reaction (par-

agraph 2.2) and in the fume hood, 20 ml of wa-

ter as reagent, a few mg of ZnO2 and 2.92 g of 

cetyltrimethylammonium bromide 

N(C19H42)Br are introduced at 50 °C for three 

hours under stirring. Methyl hypobromite 

(CH3OBr) is removed by distillation as it is 

formed. The yield of the reaction is 82%. 

δ(ppm): RMN 1H (400 MHz, D2O) δ = 3,91 (s, 

1H); 3,64 (m, (31) x2H); 1,92 (m, 2H). 

 

 

3. Results and discussion 

3.1 Thermal properties 

The thermal properties of the oligomers: N-

hexadecyl, N-methyl, N-(1,1 dimethyl) ethoxy 

amin (product 1) and di-cetyldimethyl-ammo-

nium of Zinc (product 2) were evaluated under 

nitrogen at atmospheric pressure (see figure. 1). 

On the one hand, surfactant 1 (CTAB + Acetone 

+ ZnO2) shows a very broad endothermic peak 

with a maximum at 195 °C, which corresponds 

to its melting temperature Tf. For this sample 

the Tg could not be detected (Figure. 1) proba-

bly because of the small change in its heat ca-

pacity during the glass transition.  It is noted 

that the addition of ZnO2 plays a very important 

role for this phenomenon [43]. 

From these data, it is very interesting to men-

tion that this resulting surfactant is thermo-

plastic, its temperature Tf remains unchanged 

even after a second heating (See table.1). It is 

necessary to note the good correlation between 

these results and those given in the bibliog-

raphy [44-46]. 

The second product (CTAB + H2O + ZnO2) re-

sembles that in figure. 2. It shows a sharp nar-

row exothermic peak at 280 °C with a weight 

loss of 7.1%. There is some instability with a 

thermal shift around 228 °C, which corresponds 

to the glass transition temperature Tg. 

The exothermic peak on this sample (CTAB + 

H2O + ZnO2) corresponds to the cold crystalli-

zation of the surfactant. The temperature of this 

peak varies only slightly with the addition of 

ZnO2 nanoparticles. In the literature Ray et al 

[43] worked on non-plasticized polymers and 

noticed a considerable decrease in Tc with the 

addition of nanoparticles (NP). They were thus 

able to conclude that a small quantity of NPs is 

sufficient to play a nucleating role on the poly-

mer. 

 

Figure. 1 DSC of both products 1 and 2 

 

The CTAB emulsion (Figure. 2) shows two 

peaks even after a second heating, this is not 
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due to solvent evaporation. The first is around 

260 °C and is due to crystallization, CTAB is a 

surfactant that has a melting point between 

237-243 °C. Thermal decomposition starts af-

ter 400 °C and peaks at 435 °C. The transition 

temperature Tg is about 111 °C. 

 

Figure. 2 DSC of CTAB Product 

 

  Products Tg (°C) Tc or Tf (°C) 

         1                 /       195 

         2      228       280 

     CTAB      111       260 

Table.1: Characteristic temperatures of  

the surfactants. 

 

3.2 Preparation of the paint and plates  

The plates used are rectangular (7.5 cm x 6.5 

cm) in Aluminum, thickness 3 mm (Figure.3). 

The test paints were applied directly using a flat 

brush on the surface of the plate previously 

scraped with sandpaper, cleaned and washed 

with methanol. 

The paints are prepared by dissolving the resin 

(35 parts) in 2-methoxypropanol (65 parts). The 

formulations are prepared in a laboratory DI-

SPERMAT dissolver.  

 

 

 

 

 

Table. 2 shows all the paint formulations ap-

plied on these plates with different rates of bio-

cides. 

 

        Biocide Biocide content Plate number 

 Without paint (control)         0%            I 

 TBT (plate II) [47]         10%           II 

     Surfactant. 1          10%           III 

     Surfactant. 2         10%            IV 

         Table.2 The different Products with their percentage. 

 

Figure.3 Metal support (February 1, 

2022) before immersion. 

3.3 Exposure to the marine environment 
The painted plates were immersed at a depth of 

4m in the port of Oran -the second economic 

city located in the west of Algeria- near the cus-

toms quay. They will remain twenty-four 

months (24 months) which corresponds to four 

cold and hot seasons. 

These plates will be photographed and a study 

of their behavior with respect to the deposition 

of the underwater fouling will be carried out at 

a later date (February 2022 immersion date). 

 

4. Impact on health 

In Europe, nano products are introduced in 

several areas. Today, scientific research has not 

been able to control the lack of epidemiologi-

cal data, to make a complete assessment of the 

potential risks associated with manufactured 

nanomaterials contained in all everyday con-

sumer products. 
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However, an increasing number of publica-

tions concerning toxicological and eco-toxico-

logical data for hazard assessment have been 

published. In 2013, the main nanomaterials 

used in these proucts worldwide are, in de-

scending order, silver, titanium, carbon, silica, 

zinc and gold [48, 49]. They are found in many 

sunscreens as well as in some toothpastes. 

They are also present in the composition of 

clothing textiles because of their antibacterial 

properties. The number of products containing 

nanomaterials has doubled in five years [48-

52]. Regulation 528/2012 specified that bio-

cides containing nanomaterials must be subject 

to a specific authorization procedure and this 

from 1 September 2013 [53]. 

 

5. Conclusion  

In recent decades, environmental protection 

concepts have led man to abandon coatings 

containing biocides that are toxic to non-target 

species (not responsible for marine biofoul-

ing). After the implementation of national and 

international regulations, limiting and then 

banning TBT-based paints, research has inten-

sified in order to develop antifouling coatings 

that are both effective and environmentally 

friendly, but also adapted to the specificities of 

each use (size of vessels, duration and speed of 

travel, etc.). The development of biodegrada-

ble materials, nano-structured matrices, and 

the use of natural biocides obtained by extrac-

tion from the natural environment are promis-

ing. 

In this study we have shown that it is possible 

to prepare stable, pure and non-toxic surfac-

tants with one or two C16H33- chains in good 

yield. However, the introduction of Zn atom 

improves the solubility of these surfactants in 

organic solvents. 

 

The glass transition temperatures are 228°C for 

product 2 and 111°C for the starting product 

(CTAB) almost half. For product 1 the Tg tem-

perature could not be detected. 

The decomposition temperatures are around 

400°C which is quite suitable considering the 

presence of C16H33-. 

And in order not to significantly alter the basic 

properties of these surfactants, the amount of 

ZnO2 can be increased. 

DSC also revealed that the crystallization and 

melting temperatures are incomparable but in 

good agreement with the results cited in bibli-

ography. 

There are no regulatory texts (national, Euro-

pean or international) concerning the risks of 

these substances for the environment and for 

humans (workers and users).The application of 

paint with these products will be discussed in 

other articles. 

 

6. Perspective 

Previous studies in our laboratory have led to 

the development of an original method for the 

synthesis of surfactants with amine and quater-

nary ammonium functions from very simple re-

agents.  

These surfactants showed a bacteriostatic activ-

ity towards bacterial strains, even in the ab-

sence of ammonium functions (product 1). We 

have taken this know-how and modified it in 

order to adapt it to an application in the field of 

antifouling paints.  

Our main perspectives of this work are, first, to 

elaborate coatings with amine (product 1) and 

quaternary ammonium (product 2) functions; 

then, secondly, to verify if they have inhibiting 

activities towards the marine organisms in-

volved in the fouling phenomenon. 
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