
INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 9 ISSUE 8, 2020

08/31/2020

WWW.NEW.IJASCSE.ORG 1

A Practical Approach for Verification of Graph

Transformation with Description Logic

Mohamed Chaabani

Department of Computer Science

LIMOSE Laboratory

University of Boumerdes, Algeria.

 chaabani@univ-boumerdes.dz

Mohamed Mezghiche

Department of Computer Science

LIMOSE Laboratory

University of Boumerdes, Algeria.

mohamed.mezghiche@gmail.com

Abstract— Graphs and visual models play a central role in the

modeling and meta-modeling of software systems, these models

are specified using a modeling formalism, in a high-level

abstraction independent of the platform, in which the focus is

on the concepts rather than the implementation. This allows

keeping the model, transporting it, and then transforming it

into code. Several graph transformation tools have been

developed to ensure efficient transformations. This

transformation requires a process of verification and

validation to guarantee the correction of this transformation

process, of which there are different ways to checking that a

software system achieves its goal. In computer science, formal

methods are techniques that allow rigorous reasoning, using

semantic and formal methods, to prove their validity with

respect to a certain set of properties. In this sense, description

logics are promising candidates for encoding graph structures

and reasoning about graph transformations, they are

privileged target to operationalize graph transformation tools

because they have the mechanisms of reasoning or inference.

Keywords-graph transformation; verification; Description logics;

knowledge base.

I. INTRODUCTION

 The main focus of this article is to introduce a new

approach for verification of graph transformation with

description logics.

Graphs play a central role in the simulation of different

fields, covering many areas of application such as software

engineering and visual languages. Moreover, graph

transformation [24] or graph rewriting is a mechanism for

specifying and applying transformations to graphs. The

main idea behind this transformation is rule-based graph

modification, to accomplish these goals, several tools are

developed and used, such as Attributed Graph Grammar

(AGG) [13] and ATOM3 [12].

In order to ensure a valid transformation by these

applications, it is necessary to prove the correctness of the

transformation, i.e, if the initial graph satisfies a given set of

conditions, the graph obtained must also satisfy the same

conditions.

 Description Logics (DLs)[1,18,19,9] offer powerful

formalisms for specifying and reasoning about graphs, most

of which are decidable fragments of first-order logic. They

have a formal semantics which is the basis of the reasoning

service.

The approach presented in this article consists in translating

or rewriting the definition of the graph represented by graph

transformation tools in the description logic. This translation

is provided by a transformation engine, which takes as input

the file represents a graph in the tool and translates it into

the syntax of the description logic. This new representation

is known as a knowledge base. Then, the verification is

ensured by the reasoning mechanisms of logic.

The amount of existing literature in the field of research in

verification of graph transformation [28] is vast. Therefore,

most of them use the model checking approach [25,26,27],

the aim is to carry out a symbolic exploration of the state

space, in order to determine out whether certain invariants

are preserved or certain states are reachable.

 Our interest in the subject stems from previous work on the

formalization of the description logic [7,8,9] and the

verification of graph transformations [10]. In this last

article, we defined an imperative programming language for

the transformation of the knowledge base which is seen as a

graph structure, made up of nodes and binary relations

between these nodes. A more in-depth investigation is

carried out in [5].

 This approach is based on logical reasoning for a

rigorous and complete verification, the other approaches use

partial verifications based on model checking or heuristic

approaches. Another fundamental characteristic of this

proposal is the feasibility of the implementation and its

association with graph transformation tools such as AGG

[13] .

mailto:chaabani@univ-boumerdes.dz
mailto:mohamed.mezghiche@gmail.com

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 9 ISSUE 8, 2020

08/31/2020

WWW.NEW.IJASCSE.ORG 2

 The paper is organized as follows. Section II

provides definitions of graphs and basic concepts of graph

transformation. Section III presents useful notions of

description logics. In section IV, we define an approach for

verification of graph transformation. In Section V the

approach is implemented for the AGG tool. Section VI

concludes the paper.

II. GRAPHS TRANSFORMATION

Graphs are a practical, intuitive and simple way to visualize

and model complex systems, examples include UML

diagrams, Petri nets or Automata. Graph transformation [17]

can be used to specify how these models can evolve. They

have evolved as a consequence of the weakness of

expressiveness in classical rewriting approaches such as

Chomsky's grammars and the rewriting of terms to deal with

nonlinear structures. A graph transformation consists of

applying rules to a graph and iterating this process. Each

rule application transforms a graph by replacing one of its

parts with another graph. In other words, the graph

transformation is the process of choosing a rule from a

specified set, applying this rule to a graph and repeating the

process until no rule can be applied. The graph

transformation is specified as a graph grammar model.

These are a generalization of Chomsky’s grammars for

graphs. They are composed of rules. A rule consists of two

parts, the Left Hand Side (LHS) and the Right Hand Side

(RHS). The LHS intended to be matched with the parts of

the graph (called host graph) where the rule is applied. The

right part of the rule, the RHS describes the modification

that will be made on the host graph, it substitutes in the host

graph the part identified by the left part of the rule.

A. Principle of the transformation graphs

 The principle of a graph transformation is

schematized in the Figure 1. The idea is to modify the

structure of a graph by a transformation rule (or derivation).

A transformation rule p is a pair (L, R) where L and R are

graphs. More precisely, p is a morphism of graph from L to

R. Applying the rule to a host graph G is equivalent to

finding an occurrence (or match) of L in G that is replaced

by the graph R to arrive at a graph H.

Figure 1. Principle of Graph Transformation.

B. Approaches and Tools for Graph Transformation

 Currently, several approaches and tools have been

developed for the graph transformations, we quote:

VIATRA VIsual Automated model TRAnsformations [11]

ATOM3 (A Tool for Multi-formalism and Meta-

Modeling)[12], PROGRES (PROgrammed GRaph

REwriting Systems) [16], GreAT (Graph Rewriting and

Transformation) [3], Eclipse Modeling Framework (EMF)

[6], Attributed Graph Grammar (AGG) [13], etc. They all

allow the generation of a target graph from another host

graph using a well-defined grammar.

III. DESCRIPTION LOGICS

 The Description Logics DL [1, 18, 19, 9] are a

family of knowledge representation and reasoning

languages most of which are decidable fragments of First

Order Logic “FOL”. This allows for formal reasoning.

They are used for many applications. Among them we can

mention: The representation of ontology languages used in

the context of the Semantic Web such as OWL [2], the

automatic language processing [20] and the representation

of the semantics of UML class diagrams [4].

A. Syntax

 The basic elements that are defined and

manipulated by DL are concepts and roles. Description

logics allow the representation of the knowledge of a

domain by the mean of individuals (instances), concepts

which are classes of individuals and roles that model

relations between concepts.

For example, describing the domain of people and their

family relationships could use concepts such as Parent to

represent the set of all parents and Female to represent the

set of all female persons, roles such as parentOf to represent

the (binary) relationship between parents and their children,

and individual names such as julia and john to represent the

individuals Julia and John.

Example 1. Concepts and Roles

We recall that description logics have as a common basis AL

(Attribute Language) enriched with different extensions:

The description logic ALC (Attribute Language with general

Complement), adds negation to AL. The most useful

extensions of ALC are ALCN and ALCQ.

 Concepts : Male, Femal, Person …

 Roles: haschild, ParentOf, haswife…

 Individuals: julia, jhon, .,...

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 9 ISSUE 8, 2020

08/31/2020

WWW.NEW.IJASCSE.ORG 3

ALCQ adding qualified number restrictions, other logics,

add the notion of sub-roles etc...

ALCQ concepts are inductively defined from a set of

constructors, starting with a set nc of concept names, a set

nr of role names, and (possibly) a set ni of individual names

(all countably infinite).

Let c concept name, r role name and n a natural number, the

data type C of concepts can be defined inductively by:

C ::= ⊤ (universal concept)

 | ⊥ (empty concept)

 | c (atomic concept)

 | ¬ C (negation)

 | C ⊓ C (conjunction)

 | C ⊔ C (disjunction)

 | (≥ n r C) (at least)

 | (< n r C) (no more than)

 | (∀ r C) (universal quantifier)

 | (∃ r C) (existential quantifier)

For example, concept inclusions allow us to state that all

women are female and that all females are persons, then the

description of the concept Woman is Female ⊓ Person. The

Union (also called disjunction) is the dual of intersection.

For example, the concept Parent can be defined as Father ⊔

Mother, wish describe those individuals that are either

fathers or mothers. The Top concept ⊤ is a special concept

with every individual as an instance, it can be viewed as an

abbreviation for C ⊔ ¬C for an arbitrary concept C, where

the Bottom concept ⊥ is the dual of ⊤ , that is the special

concept with no individuals as instances; it can be seen as an

abbreviation for C ⊓ ¬C for an arbitrary concept C.

The concept Parent can be defined using the role parentOf,

parent is someone who is a parent of at least one individual.

In DLs, this relationship can be represented by the concept

∃ parentOf.⊤ . More, if we want to represent the concept

parent that all his children are females, we use the universal

restriction ∀ parentOf.Female.

B. Semantics

A semantics is provided by an interpretation I is essentially

a couple (∆I, .I) where ∆I is called the domain of

interpretation and .I is an interpretation function that maps

an atomic concept A to subset AI of a domain of

interpretation ∆I and a role r to subset rI of the product ∆I ×

∆I . Its extension to other concept constructors is defined, in

mathematical notation, as follows:

 ⊤ I = ∆I

 ⊥ I = ∅

 (C ⊓ D)I = CI ∩ D I

 (C ⊔ D)I = CI ∪ DI

 (¬C)I = ∆I − CI

 (∀ r.C)I = {x ∈ ∆I | ∀ y : (x, y) ∈ rI → y ∈ CI}

 (∃ r.C)I = {x ∈ ∆I | ∃ y : (x, y) ∈ rI ∧ y ∈ CI}

 (≥ n r C)I = {x ∈ ∆I | #{y ∈ CI | (x, y) ∈ rI } ≥ n}

 (< n r C)I = {x ∈ ∆I | #{y ∈ CI | (x, y) ∈ rI } < n}

Table 1. Description logic semantics.

C. Knowledge Representation

Domain knowledge representation with DLs is done in two

levels. The first, the terminology level or TBox, describes

the general knowledge of a domain while the second, the

factual level or ABox, represents a precise configuration. A

TBox includes the definition of concepts and roles, while an

ABox describes individuals by naming and specifying in

terms of concepts and roles, assertions that relate to these

named individuals. Several ABoxs can be associated with

the same TBox, each represents a configuration made up of

individuals, and uses the concepts and roles of the TBox to

express it. DLs offer an extra feature that permit to attribute

names to the complex concepts and describe relationships

between them. These relationships are presented in the form

of axioms called terminological axioms. More specifically,

if C and D are DL concepts then the terminological axioms

have the form, C ⊑ D or C ≡ D. The first is called

subsumption or inclusion axiom, while the second is called

equivalence axioms. Intuitively, an entry form C ⊑ D

denotes that the concept D is more general than C

(otherwise C is a subconcept of D). The equivalent C ≡ D

denotes that the two concepts are equivalent. A TBox is

simply a finite set of subsumption or equivalence axioms.

 Example 2. Terminological axioms.

 An assertional axiom (called also Facts) makes assertions

about an instance being an element of a concept, and about

being in a relation. In DL, facts are elements of an A Box.

For a concept C, a role name r and x and y are individual’s

variable names, the type of facts is defined as follows:

fact ::=

 x : C (instance of concept)

 | x r y (instance of role)

 | x = y (equality of instances)

 | x ≠ y (inequality of instances)

We extend the interpretation of concepts to construct the

interpretation of fact. The interpretation of fact is boolean

value, defined in according with the syntax of fact:

 Woman ≡ Female ⊓ Person

 Woman ⊑ Female

 ⊤ ⊑ Male ⊔ Female

 Parent ≡ Father ⊔ Mother

 Male ⊓ Female ⊑ ⊥

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 9 ISSUE 8, 2020

08/31/2020

WWW.NEW.IJASCSE.ORG 4

 (x : C)I = xI ∈ CI

 (x r y)I = (xI, yI) ∈ rI

 (x = y)I = (xI = yI)

 (x ≠ y)I = (xI ≠yI)

Example 3. Assertional axioms

The reasoning in DL makes it possible to infer knowledge

represented implicitly from other explicit contents in

knowledge bases. Two paths have been mainly explored so

far: normalization-comparison algorithms, and a method

derived from the method of semantic tableau in classical

logic, a semantic tableau is a procedure that allows building

an interpretation that satisfies the assertion of a given

concept. Derivations can be established by applying a set of

decomposition rules.

IV. VERIFICATION OF GRAPH TRANSFORMATIONS

APPROACH

The aim of this study consists of modeling a graph

transformation system (host graph, target graph) in the

description logic by creating a KB (Knowledge Base); using

a description logic reasoning to verify that the properties are

preserved during the transformation process.

Figure 2. Components of the Approach

The main concepts of our approach are summarized by a

scenario shown in Figure 3. We have an input model which

represents the graph transformation system environment and

an output model which represents the knowledge base in

description logic. A transformation is performed using a

transformation engine, which is defined by different

functions. Most tools of graph transformations system

structure and organize a set of graph information in a file in

well-defined structures of XML family, GraphML, Ggx,

XGMML, GraphXML and GXL. This representation allows

the elements that represent the graph to be easily

extracted.The transformation engine is built in three stages,

data extraction, transformation and loading.

Figure 3. Approach Architecture

In the following, we will detail our procedure.

Figure 4. Verification procedure

A. Data Extraction

Data extraction is a process of collecting or retrieving data

from the source representation, which defines the graph

structure. it can consolidate, process and refine data, then

store it before using it.

This data extraction process is carried out by translation

tools using a translator or a parser; it allows to browse the

graph file.

B. Construction of Knowledge Base

Knowledge bases (ABox and TBox) are made up of two

fragments, a static fragment and a dynamic fragment.

A static fragment (also called signature) specifies the graph

at the abstract level, (Meta specification), it defines valid

axioms for any definition of a graph, this fragment is

predefined and can't be changed during runtime.

A TBox can contain these axioms

 Graph ⊑ ⊤

 Host_Graph ⊑ Graph

 Target_graph ⊑ Graph

 Node ⊑ Graph

 On the other hand, the dynamic part is inserted from the

definition of the graph provided by the parser.

Figure 5. Construction of KB

 julia : Mother or (Mother(julia))

 john parentOf julia or (parentOf(julia,john))

 julia ≠ john

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 9 ISSUE 8, 2020

08/31/2020

WWW.NEW.IJASCSE.ORG 5

C. Reasoning

Once the construction of the knowledge base is completed,

the process of logical reasoning carried out the verification,

according to the properties required for the correction of the

transformation.

It is therefore trivial to write these requests in the syntax of

DL, this step is ensured by tools used for this purpose, such

as Fact ++, Pellet or Racer.

V. IMPLANTATION FOR AGG TOOL

AGG (Attributed Graph Grammar) is a tool for transforming

typed and attributed graphs. It is considered one of the

general purpose tools for transforming attributed graphs and

the most widely used and cited tool in the field. AGG was

developed for the purpose of implementing the Single-

PushOut (SPO) approach and Double-PushOut (DPO)

approach. It offers a visual framework for defining rewrite

rules in a graphic and simple way. It also defines strategies

for implementation of these rules with priority levels

mechanism (layers). AGG saves the typed graph, the host

graphs and the rewrite rules in the same GGX format file. It

is important to note that AGG offers a Java API allowing its

integration into Java applications.

In the following, we will detail our procedure written with

the AGG tool.

Figure 6. Structure of Verification Tool

A. Data Extraction

The first step is to extract the constituent elements of our

transformation system using a parser,

The knowledge base is extracted from XML data from AGG

file using DOM.

The Document Object Model (DOM) is W3C specification

for proposing an API for HTML and XML documents. It

determines the logical structure of documents and allows to

model, browse and manipulate an XML document. In the

DOM specification, XML is increasingly used to represent

any type of information stored on any type of system. Most

of them are traditionally seen as data rather than documents.

However, XML represents this data as documents, and the

DOM can be used to manage this data.

The main role of DOM is to provide a memory

representation of an XML document in the form of a tree of

objects and to allow its manipulation (browsing, search and

update).

B. Reasoning

The verification of the correctness of the graph

transformation is guaranteed by the reasoning mechanism of

the DL reasoner, the knowledge base which is made up of

assertional and terminological axioms is specified in the

language of the description logic according to the syntax of

this reasoner.

Pellet is among the most widely used reasoners. Open

source Java-based reasoner for SROIQ with simple

datatypes. It implements a tableau-based decision procedure

and has an interface that allows their connection with this

application.

VI. CONCLUSION

This document introduced an approach and a tool for the

verification of graph transformations, this approach is

considered as a logical verification layer based essentially

on the extraction of the definition of the graph in the

description logic.

The implemented tool based on this approach can extract

and specify data from the XML file of the AGG graph

transformation system in a knowledge base.

The graph is therefore represented in the form of a

knowledge base and verification is ensured by the reasoning

mechanism of the description logic, which is the most

suitable formalism for the representation and reasoning on

knowledge. Several reasoners are implemented such as

FaCT++ [21], RACER [22] and Pellet[23], with such

reasoners we check the preservation of properties during the

graph transformation process, more precisely, if a property

is checked in the host graph it must also be checked in the

target graph.

VII. FUTURE WORK

We will consider several extensions of this work, among

which we can mention is the representation of rewriting

rules of the graph transformation system in the knowledge

base of description logic. This representation makes it

possible to check the correctness of the transformation

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 9 ISSUE 8, 2020

08/31/2020

WWW.NEW.IJASCSE.ORG 6

system independently of the instances. The generated base

represents the functional part of the rewrite system. Another

possible extension is to generalize the operation of this tool

on other systems such as Groove and adapt it to be

compatible with other formats.

REFERENCES

[1] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., Patel-
Schneider, P. F., 2007. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press.

[2] Baader, F., Horrocks, I., Sattler, U., 2005. Description Logics as
Ontology Languages for the Semantic Web. Vol. 2605/2005 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp.
228–248.

[3] Balasubramanian, D., Narayanan, A., van Buskirk, C., & Karsai, G.
(2007). The graph rewriting and transformation language: GReAT.
Electronic Communications of the EASST, 1.

[4] Berardi, D., Calvanese, D., & De Giacomo, G. (2001, September).
Reasoning on UML class diagrams using description logic based
systems. In Proc. of the KI’2001 Workshop on Applications of
Description Logics (Vol. 44).

[5] Brenas, J. H., Echahed, R., & Strecker, M. (2018, June). Verifying
graph transformation systems with description logics. In International
Conference on Graph Transformation (pp. 155-170). Springer, Cham.

[6] Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., &
Weiss, E. (2006, October). Graphical definition of in-place
transformations in the eclipse modeling framework. In International
Conference on Model Driven Engineering Languages and Systems
(pp. 425-439). Springer, Berlin, Heidelberg.

[7] Chaabani, M., Mezghiche, M., Strecker, M., Dec. 2009.
Formalisation de la logique de description ALC dans l’assistant de
preuve Coq. In: Bellatrache, L., Kassel, G., Thiran, P. (Eds.), Proc.
3es Journées francophones sur les ontologies. pp. 149–163.

[8] Chaabani, M., Mezghiche, M., Strecker, M., Jun. 2010. Vérification
d’une méthode de preuve pour la logique de description ALC. In: Ait-
Ameur, Y. (Ed.), Proc. 10ème Journées Approches Formelles dans
l’Assistance au Développement de Logiciels (AFADL). pp. 149–163.

[9] Chaabani, M., Mezghiche,M and Strecker M., "Formal verification of
a proof procedure for the description logic ALC." arXiv preprint
arXiv:1307.8211 (2013).

[10] Chaabani, M., Echahed, R., Strecker, M.: Logical foundations for
reasoning about transformations of knowledge bases. In: Eiter, T.,
Glimm, B., Kazakov,Y., Krötzsch, M. (eds.) DL–Description Logics.
CEUR Workshop Proceedings,vol. 1014, pp. 616–627.

[11] Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., & Varró,
D. (2002, September). VIATRA-visual automated transformations for
formal verification and validation of UML models. In Proceedings
17th IEEE International Conference on Automated Software
Engineering, (pp. 267-270). IEEE.

[12] De Lara, J., & Vangheluwe, H. (2002, April). AToM 3: A Tool for
Multi-formalism and Meta-modelling. In International Conference on
Fundamental Approaches to Software Engineering (pp. 174-188).
Springer, Berlin, Heidelberg.

[13] Ermel, C., Rudolf, M., & Taentzer, G. (1999). The AGG approach:
Language and environment. In Handbook Of Graph Grammars And
Computing By Graph Transformation: Volume 2: Applications,
Languages and Tools (pp. 551-603).

[14] Ehrig, H., Engels, G., Kreowski, H. J., & Rozenberg, G. (1999).
Handbook of graph grammars and computing by graph
transformation: vol. 2: applications, languages, and tools.

[15] Strecker, M. (2008). Modeling and verifying graph transformations in
proof assistants. Electronic Notes in Theoretical Computer Science,
203(1), 135-148.

[16] Zündorf, A. (1994, November). Graph pattern matching in
PROGRES. In International Workshop on Graph Grammars and
Their Application to Computer Science (pp. 454-468). Springer,
Berlin, Heidelberg.

[17] Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H. J.,
Kuske, S., ... & Taentzer, G. (1999). Graph transformation for
specification and programming. Science of Computer programming,
34(1), 1-54.

[18] Baader, F., Horrocks, I., Lutz, C., & Sattler, U. (2017). Introduction
to description logic. Cambridge University Press.

[19] Krötzsch, M., Marx, M., Ozaki, A., & Thost, V. (2017, October).
Attributed description logics: Ontologies for knowledge graphs. In
International Semantic Web Conference (pp. 418-435). Springer,
Cham.

[20] Gyawali, B., Shimorina, A., Gardent, C., Cruz-Lara, S., & Mahfoudh,
M. (2017, May). Mapping natural language to description logic. In
European Semantic Web Conference (pp. 273-288). Springer, Cham.

[21] Tsarkov, D., & Horrocks, I. (2006, August). FaCT++ description
logic reasoner: System description. In International joint conference
on automated reasoning (pp. 292-297). Springer, Berlin, Heidelberg.

[22] Haarslev, V., & Möller, R. (2001, June). RACER system description.
In International Joint Conference on Automated Reasoning (pp. 701-
705). Springer, Berlin, Heidelberg.

[23] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007).
Pellet: A practical owl-dl reasoner. Journal of Web Semantics, 5(2),
51-53.

[24] König, B., Nolte, D., Padberg, J., & Rensink, A. (2018). A tutorial on
graph transformation. In Graph Transformation, Specifications, and
Nets (pp. 83-104). Springer, Cham.

[25] Rensink, A., Schmidt, Á., & Varró, D. (2004, September). Model
checking graph transformations: A comparison of two approaches. In
International Conference on Graph Transformation (pp. 226-241).
Springer, Berlin, Heidelberg.

[26] Varró, D. (2004). Automated formal verification of visual modeling
languages by model checking. Software & Systems Modeling, 3(2),
85-113.

[27] Padberg, J., & Schulz, A. (2016, July). Model checking
reconfigurable Petri nets with Maude. In International Conference on
Graph Transformation (pp. 54-70). Springer, Cham.

[28] Schneider, S., Dyck, J., & Giese, H. (2020, June). Formal verification
of invariants for attributed graph transformation systems based on
nested attributed graph conditions. In International Conference on
Graph Transformation (pp. 257-275). Springer, Cham.

