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A b s t r a c t :  
 The main contribution of this paper is the application of the technique of hybridization between two 

meta-heuristics methods, PSO and MA, for solving the problem of economic and environmental dispatching, 
which is a multi-objective problem. The two contradictory objectives: fuel costs and emissions must be 
minimized at the same time while satisfying certain constraints of the system. In a multi objective optimization 
problem, to obtain good solutions, the concept of Pareto dominance is used to generate and sort dominated 
and non-dominated solutions. Several optimization runs of the proposed approach have been carried out on 
the IEEE 30 bus and a system with 6 generators. The strength of the proposed approach is tested and 
validated by solving several cases as: the fuel cost minimization, emission minimization, emission and cost 
minimization simultaneously 
Keywords: Economic power dispatch (EPD) ,Combined economic emission dispatch (CEED),Monkey 
algorithm (MA),Particle Swarm Optimization (PSO),Hybrid method. 
 
1. INTRODUCTION 
     The economic power dispatch (EPD) problem 
has been one of the most widely studied subjects 
in the power system community since Carpentier 
first published the concept in 1962 [1]. The EPD 
problem is a large-scale highly constrained 
nonlinear non-convex optimization problem [2]. 
To solve it, a number of conventional 
optimization techniques such as nonlinear 
programming (NLP) [3,4], quadratic 
programming (QP) [5], linear programming  
(LP) [6], and Interior Point Methods [7], 
Newton-based Method [8],  Mixed Integer 
Programming [9], Dynamic Programming [10], 
Branch and Bound [11] have been applied 
Applications of conventional optimization 
techniques such as the Gradient-based 
Algorithms are not adequate to solve this 
problem .  

The Meta-heuristic techniques seem to be 
promising and evolving, and have come to be the 
most widely used tools for solving EPD.  
To solve this problem, we have combined two 
meta-heuristic methods, the PSO and the MA. 
The acceleration of convergence speed, the 
improved solution quality and the balance 

between exploration and exploitation are 
achieved with approach PSO-MA. 

2. PROBLEM FORMULATION 
2.1. CONVENTIONNEL EPD PROBLEMS  
    The goal of conventional EPD problem is to 
solve an optimal allocation of generating energy 
in a power system. The power balance constraint 
and the generating power constraints for all units 
should be satisfied.. while satisfying the power 
balance equality constraint and several 
inequality constraints on the system 
2.2. OBJECTIVE FUNCTIONS 
2.2.1. MINIMIZATION OF FUEL COST 

The total fuel cost function is formulated as 
follows: 





Ng

1
)()(

i
GiiG PfPf                                        (1)                                         

iGiiGiiGii cPbPaPf  2)(                          (2)                         

Where )( GPf  is the total production cost in $/hr; 
)( Gii Pf  is the fuel cost function of unit i in $/hr;  

ai ,bi and ci are the fuel cost coefficients of unit i;  
GiP  is the real power output of unit i in MW; 

2.2.3. MINIMIZATION OF REAL POWER LOSS 

   DOS: 17 May 2022
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The main objective is to minimize the network 
active power loss while satisfying a number of 
operating constraints. The objective function 
may be expressed as: 

  
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Where gk is  the conductance of a transmission 
line k connected between ith and jth bus, Vi , Vj , 

i , j are the voltage magnitudes and phase 

angles of i th and jth bus respectively, nl is the 
total number of transmission lines. 
2.2.4 MINIMIZATION OF TOTAL EMISSION COST  
The most important emissions considered in the 
power generation industry due to their effects on 
the environment are Sulfur Dioxide (SO2) and 
Nitrogen Oxides (NOx). These emissions can be 
modelled through functions that associate 
emissions with power production for each unit: [14]: 
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Where: iα  , iβ , iγ , iε  and iλ   are coefficients of 

the ith generator emission characteristics 

The bi-objective combined economic emission 
dispatch problem is converted into single 
optimization problem by introducing price 
penalty factor h:  
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Where   is a weighting factor that 
satisfies 10   . 

Where hi: 
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3. PSO (PARTICLE SWARM OPTIMIZATION) 

   The PSO  is a stochastic technique based on 
the population of optimization developed by Dr. 
Eberhart and Dr. Kennedy, inspired by the social 
behavior of the birds being assembled [12],[13]. 
   The PSO algorithm searches in parallel using a 
group of individuals similar to other heuristic 
optimization techniques. In n-dimensional search 
space, the position and velocity of individual i 

are represented as the vectors 
and = ,,… , in this 

algorithm. 
Let = (  and = ( 

 be the best position of 
individual i and its neighbors’ best position so 

far, respectively. The modified velocity of each 
particle can be computed using the current 
velocity and the distance from Pbest and Gbest 
The positions are modified using (8). 

=  

                                (7)                                                   

+                                            (8)                                                                                                                                        
velocity of individual i at iteration k, 

  weight parameter, 
 , acceleration coefficients, 

 random numbers between 0 and 1, 
 position of individual i at iteration k, 

 best position of individual i until iterationk, 
 best position of the group until iteration k. 

The constants  and  represent the weighting 
of the stochastic acceleration terms that pull each 
particle toward the Pbest and Gbest positions. 
Inertia weight factor that controls the 
exploitation and exploration of the search space 
by dynamically adjusting the velocity and it is 
computed using (9) 

                          (9)                                                                                                   

Where,  is maximum iteration number and 
Iter is current iteration number. 
Detailed pseudo-code as fellow [15] 
1-A population of agents is created randomly. 

= (  

2-Evaluate each particle’s position according to 

the objective function 
3-Cycle = 1 
4-Repeat 
5-Update the velocity of the particles 

=  
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6-Evaluate the velocity to ascertain if it is the 

range of     
7-Move particles to their new position 

+     

 8- Evaluate to ensure that limits have not been 
exceeded. 

9. Evaluate the fitness of the individual particle , 
9. Keep track of the individual’s highest fitness 

(Gbest) 
10. Modify velocities based on Pbest and Gbest 

position 
11-Check if stopping criterion has been met. If 

not update the cycle and go to step (5). 
12-End when the stopping criterion is met. 
4.  MA (MONKEY ALGORITHM) : 

The MA was invented by Mucherino and Seref 
in 2007 [16]. MA is a meta-heuristic approach 
for global optimization [17-18], the concept of 
MA looks to strategies from other meta-heuristic 
methods like Genetic Algorithms, Differential 
Evolution, Ant Colony Optimization and etc. .[19]. 
It resembles the behaviour of ant in its search for 
food. The ant wanders randomly until it finds the 
food source, then it returns to the nest, laying a 
pheromone trail same. Upon climbing down the 
tree, the monkey marks tree branches with 
respect to the quality of the food available in the 
sub tree starting at that branch. When the 
monkey climbs up the tree again later, using the 
previous marks on the branches, it tends to 
choose those branches that lead to the parts of 
the tree with better quality of food [19], [20]:  

Step 1. Define the objective function and the 
decision variables. Input the system parameters 
and the boundaries of the decision variables. The 
population size of monkeys (M), the climb 
number (N), for our case the optimization 
problem is of minimize the total fuel cost 
function (eq 6). 

Step 2. first the initial positions of monkeys i, i 
= 1; 2;….; M, respectively,  are randomly 
generated, with n dimension: 

  Mixxxx iniii ,...,2,1,...,, 21     

Step 3. Climb process.  Climb process is a step 
by step procedure to change the monkeys' 
positions from the initial positions to new ones 
that makes an improvement in the objective 
function. The climb process is as follows: 

3-1. A vector is generated randomly as: 

  Mixxxx iniii ,...,2,1,,...,, 21        (10) 
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in which a  is called the step length of the climb 
process.  

3.2. Calculate the pseudo- gradient of the 
objective function f at point xi. 

   
nj

x

xxfxxf
f

ij

iiii
ij ,...,2,1,

2
' 






 
 (12) 

 )(),...,(),( ''
2

'
1

''
iiniiiiijij xfxfxfff      (13) 

3.3. Define parameter   nyyyy ,...,, 21  

which is calculated as follows: 

  njxfsignaxy iijiji ,...,2,1)(. '          (14) 

If   nyyyy ,...,, 21    is feasible, then x is 

replaced by yi 
Otherwise xi   remains unchanged. The steps 3-1 
to 3-3 are repeated until there is no considerable 
changes on the values of objective function or 
the climb number N reached. 
Step 4. Watch-Jump process: After the climb 
process, each monkey arrives at its own 
mountaintop, therefore; each monkey will look 
around to find a higher mountain. If a higher 
mountain is found, the monkey will jump there. 
For this a parameter b is defined as eyesight of 
the monkey which is the maximal distance that 
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the monkey can watch. The monkey jumps based 
on the following steps: 

4-1. A real number of y is generated 
randomly in the range 

  njbxbxy ijij ,...,2,1,          (15) 

4-2. If  y  is feasible and f(y)  is better 
than f(x) for ith monkey (f(y) > f(x)), the 
position is updated; otherwise, 
step 4-1 is repeated. 

Step 5. The climb process is repeated by 
considering y as initial position. 
Step 6. Somersault process: In this step, the 
monkeys find out new searching domains. 
Taking the centre of all the monkeys’ positions 

as a pivot, each monkey will somersault to a new 
position forward or backward in the direction of 
pointing at the pivot. Based on the new position, 
the monkeys will keep on climbing. The 
somersault process is as follows: 

6-1. First a somersault interval [c, d] is 
defined which the maximum distance that 
monkeys can somersault is. A real 
number  is generated randomly within the 
somersault interval. 
6-2. Defines parameter y as follows: 

 ijjijj xpxy                            (16) 

njx
M

p
M

i
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1
1
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            (17) 

where p is somersault pivot. 

6-3. If  nyyyy ,...,, 21  is feasible then x 

will be replaced by y, otherwise, repeat 6-
1, 6-3 until a feasible y is found. 

Step 7. Repeat steps 3-6 until the stopping 
criterion (maximum number of iteration) is met. 

5. PSO-MA: 
The balance between exploration and 
exploitation is achieved with approach PSO-
MA. The searching process starts with the 
PSO, then the search is pursued by the MA, the 

results found by the PSO are used as starting 
points for MA, when the search stopped the 
final solution is reached. The following steps 
summarize description of the proposed 
algorithm: 
Step 1. Run PSO 
Step 2. Define the parameters of PSO and 
initialize particles  
Step 3. Evaluate the fitness for each particle 
Step 4. Update Pbest , Gbest values and the 
position and velocities of particles 
Step 5. Check the stopping criteria 

Step 5.1. If the stopping criterion is not 
satisfied go to step 3 else Communicate 
the solution found to MA and consider 
it as the initial research space. 

 Step 6. When the number of iterations is 
reached the search is stopped and the final result 
is displayed. 
6. SIMULATION RESULTS: 
The proposed PSO-MA approach based on 
global and local search is developed in the 
Matlab programming language using 7.04 
version. In order to validate the robustness of the 
proposed method, the  electrical networks is 
tested and the result is compared . 
6. 1. NETWORK 1: SYSTEM WITH 6 
GENERATORS: 
 
A standard IEEE 30-bus six-generator test 
system has been considered. This power system 
is connected through 41 transmission lines,total 
demand of 283.4MW. Fuel coefficients, 
Emissions coefficients of generators for IEEE 
30-bus network are given in tables 1 and 2 [21]. 
The proposed approach has been applied to solve 
different cases without losses (table 3): 
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Tqble 3:Optimization results of PSO-MA approach for IEEE 30 bus 

 
Best 

(Cost ) 
PSO-MA 

Best 
(emission) 
PSO-MA 

Best 
(cost, 

emission) 
MA 

Best (cost, 
emission) 
PSO-MA 

PG1 (MW) 0.108048 0.390952 0.256800 0.274945 
PG2 (MW) 0.297429 0.460907 0.363300 0.363300 
PG3 (MW) 0.525465 0.534422 0.519400 0.519400 
PG8 (MW) 1.013721 0.392422 0.694900 0.694900 
PG11(MW) 0.523147 0.544775 0.592528 0.539400 
PG13(MW) 0.359106 0.512308 0.420100 0.420100 
Fuel cost 
($/h) 

598.5404 637.2281 612.3962 605.0216 

Emission 
(ton/h) 

0.2221 0.1942 0.2013 0.2008 

T(S) 10.92 10.6424 12.58 10.9076 

6. Case 1: Quadratic fuel cost minimization  

In this case the objective function is a quadratic 
form (equation 6); the fuel cost   minimization 
decreased to 598.5404$/h in case 1 (Best Cost 
(PSO-MA)) in comparison to 637.2281 $/h in 
case 2 (Best emission (PSO-MA)) and in a same 
acceptable time which it is not very high(Table3)  
   
 The results obtained from the PSO-MA are 
compared with other methods reported in the 
literature. The results of this comparison are 
shown in Table 4. It can be seen that the 
minimum total obtained by this method is 
598.540 $/h, which is less than the methods, BB-

MOPSO  [22] ,NSGA-II [22], NSGA [22] ,NPGA 
[22],SPEA [22],FCPSO[22], MBFA [23] ,FCPSO [23] 
,SPEA [23],NPGA [23] ,NSGA [23],DE [23], MO-
DE/PSO [24] BFGS-AL[28],NSGA-II[29],NSGA-RL[29] 

 
Always from the results seen in the Tables, it 

is seen that the PSO-MA method can obtain 
lower fuel cost and lower emission level than the 
other mentioned methods. 

In this case it is noticed, that the convergence 
was very fast because the number of the iteration 
of the latter towards optimal a solution was very 
small equal about 30. Fig.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1:Generators parameters of the IEEE 30 bus.
 

    Bus 

min
Gip (MW)    max

Gip (MW)         Cost coefficients                                                  

                                                  ia            ib         ic  

PG1  0.05                  0.5                   10          200       100 

PG2  0.05                  0.6                   10          150       120   

PG5  0.05                  1.0                   20         180        40  

PG8  0.05                  1.2                   10         100        60 

PG11  0.05                  1.0                   20         180        40  

PG13  0.05                  0.6                   10          15        100 

Table 2:Power generation limits, emission coefficient data of 
generating units of 6-unit system.

 

Bus 
    

i                                         

                                            
i  

i  
i  

i  

PG1 0.06490 -0.05554 0.04091 0.0002 2.857 
PG2 0.05638 -0.06047 0.02543 0.0005 3.333 
PG3 0.04586 -0.05094 0.04258 0.000001 8.000 
PG4 0.03380 -0.03550 0.05326 0.002 2.000 
PG5 0.04586 -0.05094 0.04258 0.000001 8.000 

PG6 0.05151 -0.05555 0.06131 0.00001 6.667 

Fig.1. Convergence graph of PSO-MA, IEEE 
30-bus test system (case1). 
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Table 4:Comparison of results by different algorithms for cost objective function of IEEE 30-bus system.  

“Case minimization of cost” 

Methods PG1 
(MW) 

PG2  
(MW) 

PG3  
(MW) 

PG8  
(MW) 

PG11 
(MW) 

PG13 
(MW) 

 Emission (T/h) Cost  
($/h) 

T 
(S) 

BB-OPSO [22] 0.109  0.3005  0.5234 1.017  0.5238  0.3603   0.22220 600.112  / 
NSGA-II [22] 0.1059  0.3177  0.5216  1.0146  0.5159  0.3583   0.22188 600.155  / 

NSGA [22] 0.1567 0.2870  0.4671  1.0467  0.5037  0.3729   0.22282 600.572 / 
NPGA   [22] 0.1080  0.3284  0.5386  1.0067  0.4949  0.3574   0.22116 600.259  / 

SPEA [22] 0.1062  0.2897  0.5289  1.0025  0.5402  0.3664   0.22151 600.150 / 
FCPSO [22] 0.1070  0.2897  0.525  1.015 0.5300 0.3673   0.22226 600.132  / 

MO-E/PSO[24] 0.1078  0.304  0.5237  1.0147  0.5223  0.3616   0.22201 600.115  / 
MBFA [23] 0.1133 0.3005  0.5202  0.9882 0.5409 0.3709  0.2200 600.17 / 
FCPSO [23]  0.1070 0.2897 0.525 1.015 0.5300 0.3673  0.2223 600.13 / 

SPEA [23] 0.1009  0.3186  0.5400  0.9903  0.5336  0.3507   0.2206 600.22  / 
NPGA [23]  0.1116  0.3153  0.5419  1.0415  0.4726  0.3512   0.2238 600.31  / 
NSGA [23]  0.1038  0.3228  0.5123  1.0387  0.5324  0.3241   0.2241 600.34  / 
DE [23]  0.110  0.300  0.524  1.016  0.524  0.360   0.2231 600.11  / 
BFGS-AL 
[28] 

0.112442 0.302364         0.519194 1.018395 0.519193 0.362411  0.2221 
 

600.1114 
 

 

NSGA-II 
[29] 

0.1317 0.2713 0.5085 1.0066 0.5369 0.3790  0.2221 
 

600.3220 
 

 

NSGA-RL 
[29] 

0.0851 0.2855 0.5641 1.0114 0.5264 0.3618  0.2241 
 

600.3285 
 

 

PSO-MA 0.1080 0.297429 0.525465 1.013721 0.523147 0.359106  0.2221 598.540 10.92 

 
 

6. Case 2: Emission minimization 

The objective function selected was the total 
emission cost minimization E as defined in 
(equation 4).  Total emission decreased to 
0.1942 ton/h in case 2 in comparison to 0.2221 
ton/h in case1 (Table 3). The results obtained 
from the PSO-MA are compared with other 
methods reported in the literature, 
the comparison is shown in Table 5, it can be 
seen that our results is bests than the other 
methods. 
It is clear that with the PSO-MA approach 
optimum solution is achieved within 45 itirations  

  
 
 
 
 
 
 
 
 
 
 

Fig.2 
 

Fig.2. Convergence graph of PSO-MA, 

IEEE 30-bus test system (case2). 
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Table 5:Comparison of results by different algorithms for cost objective function of IEEE 30-bus system. 
“case minimization of emissions” 

Methods PG1 
(MW) 

PG2 
(MW) 

PG3 
(MW) 

PG8 
(MW) 

PG11 
(MW) 

PG13 
(MW) 

Emission (T/h) Cost ($/h) T 
(S) 

BB-MOPSO  [222] 0.4071 0.4591 0.5374 0.3838 0.5369 0.5098 0.194203 638.262 / 

NSGA-II [22] 0.4074 0.4577 0.5389 0.3837 0.5352 0.5110 0.19420 638.249 / 

NSGA [22] 0.4394 0.4511 0.5105 0.3871 0.5553 0.4905 0.19435 639.209 / 

NPGA   [22] 0.4002 0.4474 0.5166 0.3688 0.5751 0.5259 0.19432 639.180 / 

SPEA [22] 0.4116 0.4532 0.5329 0.3832 0.5383 0.5148 0.19421 638.507 / 

FCPSO [22] 0.4097 0.4550 0.5363 0.3842 0.5348 0.5140 0.19420 638.358 / 

MO-DE/PSO [24] 0.4061 0.4581 0.5408 0.3822 0.5376 0.5091 0.19420 638.270 / 

MBFA [223] 0.3943 0.4627 0.5423 0.3946 0.5346 0.5056 0.1942 636.73 / 

FCPSO [23] 0.4097 0.4550 0.5363 0.3842 0.5348 0.5140 0.1942 638.3577 / 

SPEA [23] 0.4240 0.4577 0.5301 0.3721 0.5311 0.5190 0.1942 640.42 / 

NPGA [23] 0.4146 0.4419 0.5411 0.4067 0.5318 0.4979 0.1943 636.04 / 

NSGA [23] 0.4072 0.4536 0.4888 0.4302 0.5836 0.4707 0.1946 633.83 / 

DE [23] 0.406 0.459 0.538 0.383 0.538 0.51 0.1952 638.27 / 

BFGS-AL 
[28] 

0.406074 0.459069 0.537939 0.382954 0.537939 0.510027 0.1942 638.2738 / 

NSGA-II 
[29] 

0.3463 0.4668 0.5448 0.4111 0.5642 0.5008 0.1955 
 

633.0944 
 

 

NSGA-RL 
[29] 

0.3842 0.4806 0.5226 0.3857 0.5456 0.5163 0.1953 
 

638.1229 
 

 

PSO-MA 0.3909 0.46090 0.5344 0.3924 0.5447 0.51230 0.1942 637.2281 10.642 

 

6. Case 3: Emission and cost minimization 

In single-objective optimization there exists a 
global optimum, while in the multi-objective 
case no optimal solution is clearly defined but 
rather a set of optimums, which constitute the so 
called Pareto-optimal front ( Gil  et al, 2007).In 
this case, all constraints about fuel cost and 
pollution emission are considered. The CEED 
problem was considered as multi objective 
problem. The best compromise solution by using 

PSO-MA is given in Table 3.  The fuel cost in 
this case is reduced by as much as   06.5 % in 
comparison to 637.2281$/h in case 2. The 
emission is reduced by as much as 14.36% in 
comparison to 0.2221 ton/ h in case 1. In this 
case, two competing objectives, fuel cost and 
emission were considered. This multi-objective 
optimization problem was solved by the 
proposed approach (PSO-MA).  
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Fig.3. Pareto-optimal front of the proposed 

                  approach (case 3). 

 

Table 6 
Comparison of results by different algorithms for cost objective function of IEEE 30-bus system. 

“Compromise case minimization of emissions and cost” 
Methods PG1 

(MW) 
PG2 

(MW) 
PG3 

(MW) 
PG8 

(MW) 
PG11 

(MW) 
PG13 

(MW) 
Emission 

(T/h) 
Cost 
($/h) 

T 
(S) 

MODE   
[25] 

28.2240 34.8305 51.7159 70.2157 53.2158 45.1981 0.2008 610.1436 / 

NPGA  [26] 0.2663 0.3700 0.5222 0.7202 0.5256 0.4296 0.2015 608.90 / 

NSGA-II   
[25] 

24.2651 40.2072 52.0703 69.3592 56.4003 41.0979 0.2011 609.7053 / 

MOACSA  
[25] 

23.1093 36.6487 54.1967 71.2708 54.7066 43.4679 0.2020 608.2403 / 

BB-MOPSO  
[22] 

0.2595 0.3698 0.5351 0.6919 0.5500 0.4277 0.20083 609.747 / 

MOPSO  
[25] 

26.3789 39.0007 54.6339 71.0841 52.5905 39.7120 0.2014 609.2164 / 

MOPSO   
[27] 

0.2516 0.3770 0.5283 0.7124 0.5566 0.4081 0.2017 608.65 / 

BFGS-AL 
[28] 

0.233439 0.361530 0.536481 0.747001 0.536482 0.419.67 0.2033 606.7985 / 

NSGA-II 
[28] 

0.3095 0.40557 0.6201 0.6875 0.4813 0.3305 0.2024 
 

612.6105 
 

 

NSGA-RL 
[29] 

0.2675 0.3729 0.5680 0.6222 0.5857 0.4181 0.2001 
 

613.2044 
 

 

MA 0.256800 0.363300 0.519400 0.694900 0.592528 0.420100 0.2013 612.3962 / 

PSO-MA 0.274945 0.363300 0.519400 0.694900 0.539400 0.420100 0.2008 605.0216 10.92 

It is clearly shown that PSO-MA obtains the best 
cost and best emission compared to others. The 
best compromise solutions are given in Table 6. 
It is quite evident that the proposed PSO-MA 
approach yields satisfactory compromise 
solutions. Fig. 3 shows the relationship (tradeoff 
curve) of the fuel cost and emission objectives of 
non-dominated solutions. It is quite clear that 
these solutions found were well-distributed and 
covered the entire Pareto front of this case. 
 

At first, fuel cost objective, emission objective 
are optimized individually to explore the 
extreme points of the tradeoff surface in all 
cases. In this case, the basic EPD has been 
implemented as the problem becomes a single-
objective optimization problem. 
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Pareto-optimal of the approach suggested 

compared to the other methods (case 3). 

 

The proposed PSO-MA approach has been 
implemented to optimize cost and emission 
objectives simultaneously considering the third 
case stated above. The distribution of the Pareto-
optimal set over the trade-off surface is shown in 
Fig.3 for the Case 3. 
        It can be seen that the proposed PSO-MA 
technique preserves the diversity of the no 
dominated solutions over the Pareto-optimal 
front and solve effectively the problem in the all 
case considered. It is worth mentioning that, the 
Pareto-optimal set has 44 no dominated 
solutions. Out of them, two no dominated               
solutions that represent the best cost and best 
emission are given in Table 3 and in fig 3. The 
experimental results show that the proposed 
method approach yields satisfactory compromise 
solutions, then 605.0216 ($/h) and 0.2008 
(ton/h), the average CPU time in this case is 
found to be 10.90 s to   arrive at a solution. 
      So we can say that the proposed PSO-MA 
technique is superior compared to all reported 
techniques, the simulation results also reveal the 
superiority of the proposed technique in terms of 
the diversity and quality of the obtained Pareto-
optimal solutions Fig.4. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
7.CONCLUSION: 
 
      The PSO-MA based approach presented in  
this paper was applied to EPD problem with 
competing objectives of minimization of fuel 
cost and pollutant emissions. The effectiveness 
of the proposed approach is investigated on the 
IEEE 30- test system with 6 generators. 
.Reached results shows that this approach is 
efficient for solving multi-objective EPD 
problems where Pareto optimal solutions can be 
found in one simulation run. Compared with 
other methods in literature, the PSO-MA has 
better diversity characteristics, and yields better 
compromise solutions 
 

8.Prospects: 
 
In this contribution we have applied a 

hybridization technique between two 
metaheuristic methods, PSO and MA, to solve 
the problem of economic and environmental 
dispatching, which is a multi-objective problem. 
We hope that in the next work of other 
researchers to use the MA monkey algorithm by 
making other hybridizations with other swarm ( 
firefly , frog leaping , ant lion …..etc) algorithms 

and to solve the multi-objective problem of 
dispatching by inserting other objectives and 
switch from a CEED Combined economic 
emission problem to a CHPEED Combined Heat 
Power Economic Emission Dispatch problem for 
example. 
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